Soalan 2:
Selesaikan persamaan linear serentak yang berikut.
(a) \[ \begin{aligned} & x+4 y=14 \\ & 3 x+2 y=12 \end{aligned} \] (b) \[ \begin{aligned} & 3 m-2 n=19 \\ & 5 m+7 n=11 \end{aligned} \] (c) \[ \begin{aligned} & \frac{1}{3} p+q=4 \\ & \frac{p-q}{4}=2 \end{aligned} \] (d) \[ \begin{aligned} & \frac{f}{2}+\frac{g}{5}=3 \\ & 2 g-f=10 \end{aligned} \]
Penyelesaian:
(a)
\(\begin{aligned} & x+4 y=14 \ldots \ldots(1) \\ & 3 x+2 y=12 \ldots \ldots(2) \\ & \operatorname{Dari}(1), x=14-4 y \ldots(3)\end{aligned}\)
x = 14 – 4(3)
= 2
Maka, x = 2 dan y = 3.
(b)
Kaedah penghapusan:
(c)
(d)
Selesaikan persamaan linear serentak yang berikut.
(a) \[ \begin{aligned} & x+4 y=14 \\ & 3 x+2 y=12 \end{aligned} \] (b) \[ \begin{aligned} & 3 m-2 n=19 \\ & 5 m+7 n=11 \end{aligned} \] (c) \[ \begin{aligned} & \frac{1}{3} p+q=4 \\ & \frac{p-q}{4}=2 \end{aligned} \] (d) \[ \begin{aligned} & \frac{f}{2}+\frac{g}{5}=3 \\ & 2 g-f=10 \end{aligned} \]
Penyelesaian:
(a)
\(\begin{aligned} & x+4 y=14 \ldots \ldots(1) \\ & 3 x+2 y=12 \ldots \ldots(2) \\ & \operatorname{Dari}(1), x=14-4 y \ldots(3)\end{aligned}\)
Kaedah penggantian:
Gantikan (3) ke dalam (2),
\(\begin{aligned} 3(14-4 y)+2 y & =12 \\ 42-12 y+2 y & =12 \\ -10 y & =12-42 \\ -10 y & =-30 \\ y & =\frac{-30}{-10} \\ & =3\end{aligned}\)
x = 14 – 4(3)
= 2
Maka, x = 2 dan y = 3.
(b)
Kaedah penghapusan:
(c)
(d)